

Collisions on SHA-0 in one hour

Stéphane Manuel Thomas Peyrin

INRIA Rocquencourt, Team SECRET Orange Labs - AIST

> **FSE** February 10-13, 2008 Lausanne

Outline

- Introduction
- 2 Previous Collision Attacks on SHA-0
- New Results on SHA-0
- 4 Conclusion

Collisions on SHA-0

Outline

- Introduction
- 2 Previous Collision Attacks on SHA-0
- New Results on SHA-0
- Conclusion

Cryptographic hash function

- An algorithm that maps input strings of arbitrary length to "short" fixed length output strings.
- Expected security properties:
 - Preimage resistance: given any specified output, it is computationally infeasible to find any input which hashes to this output.
 - Second preimage resistance: given any specified input, it is computationally infeasible to find another input which hashes to the same output.
 - ► Collision resistance: it is computationally infeasible to find two distinct input which hashes to the same output.

Domain extender

• The Merkle-Damgard algorithm:

Compression function

• The Davies-Meyer construction:

The SHA-0 hash function

• Built in 1993, 160 bits output.

The SHA-0 hash function

• Message expansion:

$$W_k = \begin{cases} M_k, & \text{for } 0 \le k \le 15 \\ W_{k-16} \oplus W_{k-14} \oplus W_{k-8} \oplus W_{k-3}, & \text{for } 16 \le k \le 79 \end{cases}$$

Boolean functions:

step <i>k</i>	$f_k(B,C,D)$	
$1 \le k \le 20$	$f_{IF} = (B \wedge C) \oplus (\overline{B} \wedge D)$	
$21 \le k \le 40$	$f_{XOR} = B \oplus C \oplus D$	
$41 \le k \le 60$	$f_{MAJ} = (B \wedge C) \oplus (B \wedge D) \oplus (C \wedge D)$	
$61 \le k \le 80$	$f_{XOR} = B \oplus C \oplus D$	

Outline

- Introduction
- 2 Previous Collision Attacks on SHA-0
- New Results on SHA-0
- Conclusion

Chabaud and Joux [CRYPTO 98]

- Local collisions: insert a perturbation and correct it in the next 5 steps.
- Find linear differential path of interleaved local collisions with 3 constraints on the perturbation vector:
 - no truncated local collisions.
 - no consecutive perturbations in the first 16 steps,
 - no perturbation starting after step 74.

• Complexity is evaluated in terms of probability for local collisions to hold.

Biham et al.

- Biham and Chen [CRYPTO 04]
 - ▶ Speedup technique during collision search: using neutral bits, the conformance to the differential path is assured up to step 23.
- Biham et al. [EUROCRYPT 2005]
 - ▶ Multi-block technique: use several blocks to find a collision.

Wang et al. [CRYPTO 05]

 Relax the first two constraints on the perturbation vector to find a better one.

- Modify (by hands) the first steps of the differential path to compensate truncated and consecutive local collisions, using different tools:
 - modular subtraction,
 - carry effect,
 - ightharpoonup non-linearity of the boolean function f_{IF} .

Wang et al. [CRYPTO 05]

 Build from a random first block of message a chaining variable verifying specific conditions.

- Message modifications: another speedup technique.
 - ► Complexity is given in terms of number of conditions to fulfill (starts from step 20).

Naito et al. [ASIACRYPT 06]

- Based on the linear and non-linear characteristics of Wang et al.
- Submarine modifications: condition counting starts from step 24.
- Complexity:
 - ▶ 2³⁶ function calls theoretically ...
 - but requires 100 hours on average with a good PC.
 - ▶ Our estimation: 2^{40,5} function calls practically.

Complexity should be given in terms of function calls with an efficient implementation on the same computer (*i.e.* OpenSSL) according to De Cannière *et al.* proposal [Hash Workshop 2007].

Outline

- Introduction
- Previous Collision Attacks on SHA-0
- 3 New Results on SHA-0
- 4 Conclusion

Possible improvements

- Relax the last constraint to find better perturbation vectors:
 - no perturbation starting after step 74.
- Then we need:
 - multi-block technique,
 - adapted non-linear characteristics,
 - generic speedup technique.

Possible improvements

Adapt the tools developed for the recent attacks against SHA-1.

- Non-linear characteristics:
 - the automated non-linear characteristic generator from De Cannière and Rechberger (2006).
- Speedup technique:
 - the boomerang attacks from Joux and Peyrin (2007).

New perturbation vector

- Criteria for vector search:
 - minimize the number of conditions between steps 16 and 80,
 - starting step for counting conditions depends on the speedup technique,
 - adaptability with the non-linear characteristic generator.
- Several good possible vectors found.
 - Our perturbation vector:

The boomerangs

- Boomerangs are a framework:
 - ► The attacker build auxiliary differentials that can be used under neutral bits or message modifications settings.
 - ▶ With the neutral bits setting they give a generic easy to use tool for collision search speedup.
 - Constraints are set to provide good neutral bits that would exist with very low probability on a random differential path.
- Our approach:
 - First find good generic auxiliary differentials.
 - ▶ Place them so that they do not interfere with the perturbation vector.
 - ► Then run the non-linear characteristic generator taking in account these auxiliary differentials.

The boomerangs

- We build two types of auxiliary differentials:
 - ▶ a light but short one (few constraints but low range),
 - ▶ and a heavy but long one (long range but lot of constraints).
- These auxiliary differentials are used as neutral bits for steps 23 and 28 respectively.
- On average, we can set 5 auxiliary differentials (7 for the first block):
 - ▶ improvement of a factor 2⁵ on the raw attack.

First auxiliary differential

i	A;	W_{i}
-1:		
00:		
01:		
02:		
03:		
04:		
05:	b	
06:	b	a-
07:	a-	<u>ā</u>
08:	0	
09:	1	
10:		
11:		
12:		
13:		
14:		
15:		

Second auxiliary differential

i	A;	w _i
-1:	d	
00:	d	a-
01:	e-a-	<u>ā</u>
02:	e1	b-
03:	b-0	- <u>b</u> <u>a</u>
04:	0	<u>a</u>
05:	0	<u>a</u>
06:		b
07:		b
08:		
09:	f	
10:	f	
11:		-
12:	0	
13:	0	
14:		-
15:		-
15.		

Collision example

	1 st block		2 nd block	
	M ₁	M_1'	M ₂	M_2'
W _o	0x4643450b	0x46434549	0x9a74cf70	0x9a74cf32
W ₁	0x41d35081	0x41d350c1	0x04f9957d	0x04f9953d
W_2	0xfe16dd9b	0xf e16dddb	0x ee 26 22 3 d	0xee26227d
W ₃	0x3ba36244	0x3ba36204	0x9a06e4b5	0x9a06e4f5
W ₄	0xe6424055	0x66424017	0xb8408af6	0x38408ab4
W ₅	0x16ca44a0	0x96ca44a0	0xb8608612	0x38608612
W ₆	0x20f62444	0xa0f 62404	0x8b7e0fea	0x0b7e0faa
W ₇	0x10f7465a	0x10f7465a	0xe17e363c	0xe17e363c
W ₈	0x5a711887	0x5a7118c5	0xa2f1b8e5	0xa2f1b8a7
Wg	0x51479678	0xd147963a	0xca079936	0x4a079974
W ₁₀	0x726a0718	0x726a0718	0x02f2a7cb	0x02f2a7cb
W ₁₁	0x703f5bfb	0x703f5bb9	0xf724e838	0xf 724e87a
W ₁₂	0xb7d61841	0xb7d61801	0x37ffc03a	0x37ffc07a
W ₁₃	0xa5280003	0xa5280041	0x53aa8c43	0x53aa8c01
W ₁₄	0x6b08d26e	0x6b08d26c	0x90811819	0x9081181b
W ₁₅	0x2e4df0d8	0xae4df0d8	0x312d423e	0xb12d423e

A ₂	B ₂	C ₂	D ₂	E ₂
0x6f84b892	0x1f9f2aae	0x0dbab75c	0x0afe56f5	0xa7974c90

Outline

- Introduction
- 2 Previous Collision Attacks on SHA-0
- 3 New Results on SHA-0
- 4 Conclusion

Complexity comparison

Team	Theoritical	Practical	Time on a PC
Chabaud and Joux (1998)	2 ⁶¹		
Biham <i>et al.</i> (2004)	2 ⁵¹	2^{51}	20 years
Wang <i>et al.</i> (2005)	2 ³⁹		
Naito <i>et al.</i> (2006)	2 ³⁶	2 ^{40.3}	100 hours
Our results	2 ³³	2 ^{33.6}	1 hour

Collisions on SHA-0

Complexity comparison

Thank you!

Collisions on SHA-0